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Abstract 
The management of mobile agent systems that solve 
problems in a network is an issue that must be 
addressed if mobile agents are to be deployed 
industrially. While centralized solutions are possible, 
where agent information is maintained on well-known 
servers, this is hardly desirable when distributed 
problem solving is one of the motivating reasons for 
employing mobile agents. It is clear that insufficient or 
excessive numbers of agents can cause the problem 
solving capabilities of an agent-based system to be 
impaired. Also, agents being software entities are 
almost always flawed therefore requiring the upgrade 
problem to be solved. This paper presents distributed 
algorithms based upon ant social behaviour that solve 
the problems of agent density maintenance and the 
agent upgrade problem. 
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1. Introduction 
This paper concerns itself with the management of 

software agents moving throughout a network for the 
purpose of solving problems using distributed 
computation. In any system that supports distributed 
computation in an unreliable network, there is a need 
to address issues of agent density and upgrading. The 
application of mobile agents, specifically netlets [1], to 
Network Management [2] requires that these problems 
be solved in order to avoid the issues described in 
[12]; namely, that the solution becomes a problem 
itself. 

An excessive number of agents in a network can 
significantly degrade the functioning of that network, 
while too few may also compromise performance [2], 
[11]. Generally, it is sufficient to maintain agent 
density within a range; a single point value is 
unnecessarily restrictive. In fact, point control is often 
the cause of oscillatory behaviour in a controlled 
system. In an unreliable network we find that links or 
network nodes may fail with a resulting loss of any 

agents executing on the node or in transit between two 
nodes. Some might argue that the computing 
infrastructure should support reliable computation and 
transport. However, this adds significantly to the 
complexity of the mobile agent infrastructure required 
and seems unnecessary when we observe that naturally 
occurring agent systems (for example ants and wasps) 
are extremely tolerant to individual agent loss. 
Maintaining accurate statistics on agent numbers and 
position is really unnecessary for solving this problem 
if we view it from a decentralized viewpoint. In fact, 
agent populations should self-organize, as is clearly 
seen in nature [17], [18]. 

It is also too commonly the case that software, and 
agents are not likely to be exceptional here, is flawed 
either logically or functionally. When software flaws 
are discovered, software modification of individual 
agents or complete replacement of the defective agent 
must occur. A computing infrastructure supporting 
agent versioning is a more challenging problem than 
density maintenance, in that we know neither the 
positions of individual agents nor the versions actively 
moving through the network. This presents a serious 
halting problem in that we do not know the numbers 
of particular versions of the agent that are active in the 
network. It is not possible, then, to know when the 
upgrade process is complete. In other words, any 
algorithm or solution technique should be capable of 
upgrading older versions of agents for all time. 

It is difficult to conceive of an environment that 
automatically upgrades agent software when changes 
are available that does not rely on some form of global 
information. For example, the current mechanism for 
software upgrade used on personal computers is to 
check periodically with the supplier of the software 
and download improvements when available. While 
mirror sites partially solve the load balancing problem, 
the solution is still a central one, one in which global 
information is held on the supplier’s web site. Should 
the supplier move or disappear completely, the 
upgrade process fails. This, obviously, is an inferior 
solution. A decentralized solution to the versioning 



problem would have no such limitation, relying 
instead on only local information.  

This paper proposes the use of algorithms that 
exploit ideas inspired by ants; relying exclusively on 
local information and the emergent behavior of large 
numbers of agents. The paper consists of four further 
sections. Section 2 provides a brief description of the 
motivating ideas. Section 3 provides a description of 
the agent density control problem and how it can be 
solved using stigmergic communication. Section 4 
addresses the problem of upgrading software agents in 
a network and provides algorithms for the upgrade 
problem. The paper concludes with a section that 
summarizes the key contributions of the paper. 

2. Motivating Ideas 
It is difficult to argue against the effectiveness of 

many naturally occurring multi-agent systems and, in 
particular, systems exhibiting mobility. Societies of 
simple agents are capable of complex problem solving 
while possessing limited individual abilities [17]. 
Many algorithms inspired by the social behaviour of 
insects have recently been documented [18] with 
Dorigo being acknowledged as having introduced ant-
based search [5].  

Problem solving by societies of simple agents has 
a number of common characteristics. Inter-agent 
communication is local; no single agent has a global 
view of the world. Communication is also achieved 
using simple signals and these signals dissipate with 
time. Signal levels provide the driving force for 
migration patterns. Individual agents sense and 
contribute signal energy to the environment. In this 
description of the problem solving process, there are 
two distinct and important agent characteristics. First, 
there is the role of the agent within the problem 
solving process; i.e., how the work of problem solving 
is distributed to a diverse set of agents. Second, the 
degree to which the actions of one agent reinforce the 
actions of other agents in the society of problem 
solvers is significant. The appeal of swarms of 
biologically inspired agents for industrial problem 
solving has recently been appreciated [4]. Research 
into the problems and potential of multiple, interacting 
swarms of mobile agents is just beginning [3]. 

Appealing to Grassè’s principle of stigmergy (see 
[18]), ant-inspired agents solve problems by moving 
over the nodes and links in a network and interacting 
with "chemical messages" deposited in that network. 
Chemical messages have two attributes, a label and a 
concentration. Chemical messages are used for 
communication rather than raw operational 
measurements from the network in order to provide a 
clean separation of measurement from reasoning. In 
addition, chemical messages drive the migration 

patterns of agents, the messages being intended to lead 
agents to areas of the network that may require 
attention. Chemical labels are digitally encoded, 
having an associated string pattern that uses the 
alphabet {1, 0, #}. This encoding has been inspired by 
those used in Genetic Algorithms. The hash symbol in 
the alphabet allows for matching of both one and zero 
and is, therefore, the "don't care" symbol. 

3. Density Control 
The problem of resource control for mobile agents 

can be attributed to Tschudin [8] and has been studied 
by several researchers [9], [10], [11], [13], [14], [15] 
and [16]. Shehory et al [11], for example, uses agent 
cloning to ensure appropriate agent densities for 
problem solving while acknowledging the relevance of 
the load balancing literature, while Bredin et al [10], 
[14] uses Market Based Control for resource allocation 
problem resolution. Clearly, mobile agent researchers 
have long recognized the importance of having an 
appropriate number of agents in a network performing 
a given task. For example, in the routing problem 
described in [7], it was noted that if too few routing 
agents were sent out into the network, routes would 
not necessarily emerge. This is in complete agreement 
with Dorigo’s work on Ant Search [5], ant-based 
problem solving and AntNet [18]. 

The above scenario is a less interesting example of 
density control when compared to the general situation 
with agents moving through the network and never 
terminating their problem solving activity; for 
example fault detection using netlets [1], [2]. It is this 
type of problem that motivates the research reported 
here. 

Consider, then, the problem of multiple swarms of 
problem solving agents in an unreliable network. 
Clearly, if steps are not taken to inject new swarm 
agents over time, agent density will tend to zero. The 
argument is straightforward. Assuming that agent 
movement is random and uncorrelated, given a non-
zero component failure rate, λf, following a Poisson 
distribution, a network of n nodes, with m agents, the 
number of agents failing per unit time is: mλf/n. This 
expression, being unconditionally greater than zero 
given n,m greater than zero, ensures that the 
probability that the number of agents in the network at 
time t1 is less than the number of agents in the network 
at time t0, t1 > t0 is one. 

Having established the need for agent replacement, 
a mechanism for that replacement is required. We 
propose the addition of a Density Control Agent 
(DCA) class. The purpose of the density control agent 
class is to circulate continuously in the network 
depositing chemical signals in that network such that 



agent classes whose density is being controlled will 
automatically adjust their numbers to fall within the 
target density range. The DCA class uses a random 
migration decision function in order to explore all 
parts of the network equally and is responsible for 
controlling its own density. It also remains at each 
node for a randomly generated period chosen from a 
uniform distribution in order to avoid correlations 
between agent actions. This is an important 
observation as, without it, significantly greater 
oscillations are observed with possible population 
extinction. Every agent class that is density controlled 
generates a visit chemical that is sensed by the DCA. 
The DCA controls its own density in order to solve the 
problem of managing management class agents. 
Therefore, the DCA also generates a visit chemical. 
Visit chemical concentrations are associated with the 
node. The visit chemical leaves a trail of activity for 
the density-controlled problem solving agents that is 
integrated across a number of network nodes by DCA 
agents for the purpose of generating birth or death 
signals that are in turn sensed by the density controlled 
problem solving agents. Birth or death signals are, 
naturally, chemical in nature and these chemicals do 
not evaporate. 

DCA agents generate birth signals when the 
aggregated visit chemical concentration for a 
particular density control problem solving agent class 
falls below a threshold value. Visit chemical 
concentrations evaporate over time, this forming the 
dissipative field that makes the density control 
mechanism work. This is a crucial part of the control 
process, as, without it, visit chemicals would 
accumulate forever leading to the rapid extinction of 
the entire agent population. In fact, we make use of 
this observation in solving the agent upgrade problem 
described in Section 4. DCA agents generate death 
signals when the aggregated visit chemical 
concentration for a particular density control problem 
solving agent class exceeds a threshold value. Both 
types of signals are generated on the node where the 
appropriate threshold condition is violated. An 
exponential averaging process is used to aggregate 
visit chemical concentrations. 

When a density controlled problem solving agent 
senses a birth signal, it clones itself, generating a new 
agent with the parent agent consuming the birth signal. 
When a density controlled problem solving agent 
senses a death signal, it chooses to die according to a 
probability distribution, having first consumed the 
death signal. 

3.1 Results 
In order to demonstrate the utility of the above 

algorithm, the two networks used for routing 
experiments [7] were revisited for density 
maintenance. Two classes of agent, including the 
DCA, both with random migration decision functions, 
were allowed to circulate within the network. A single 
agent of each class was injected into the network and 
allowed to stabilize to the “natural” value for the 
network. In later experiments, extra agents were 
injected into the network periodically in order to see if 
the density correction algorithm could return the 
density to the appropriate value for the network. This 
had the added side effect of ensuring that at least one 
DCA agent would be present in the network. 

The minimum concentration threshold value was 
set at 1, the maximum at 5. The rate at which visit 
chemical was deposited on the node was 1.5 units per 
visit; the evaporation rate was set to 0.8 units per 
simulation time step. Figure 1 shows the variation of 
agent number with time for graph1 used in the routing 
experiments previously described [7]. The agent type 
plotted represents a very simple agent that has a 
random migration pattern and is designed to measure 
the concentration of visit chemical, nothing more. The 
focus, in this study, is the management of agent 
number and not problem solving per se. The variation 
of agent number with time represents the self-
regulation of agents in the system; no further agents 
beyond the initial seed agent were injected into the 
network. The rapid rise in agent number initially is 
due to the fact that the network contains no visit 
chemical traces for the agent type. As a consequence 
of this, birth signals will be generated for all nodes 
visited and a large number of new agents will be 
generated. Avoiding this transient is possible by 
injection of the DCA after the network has stabilized, 
i.e., after the problem solving agents have had time to 
colonize the network and lay down visit chemical 
traces that mark their presence in the network.  

Even with the start up transient, the network 
quickly recovers and settles down to a number of 
agents that oscillates around 5. Similar behavior can 
be observed in Figure 2, where agent density control is 
applied to graph2 [7]. In the experiment shown in this 
figure, the agent number oscillates around 7, with the 
number of agents never falling below 5. The 
oscillation can be further damped by choice of 
exponential averaging constant and by adjustment of 
the minimum to maximum visit chemical 
concentration threshold ratio. In the experiments 
charted in Figure 2  and Figure 3, a ratio of 5 was used 
to control the agent density. 



Figure 3. Agent Number vs Time

0

5

10

15

20

25

0 50 100 150 200 250

Time

# 
A

ge
nt

s

Figure 2. Agent Number vs Time
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Figure 2 demonstrates the utility of having density 
control come online once the network has been 
colonized by problem solving agents. In these 
experiments, density control was disabled during the 
first 20 time units of the simulation. Interestingly, 
Figure 2 shows the system moving from one stable 
state to another at approximately 72 time units. 
Continuing the simulation beyond 200 time units saw 
no further changes in state. Contrasting the dynamics 
of this system with those displayed in Figure 2 clearly 
shows a much smaller transient and more rapid 
stabilization to the steady state network behaviour. 
The number of agents injected initially seems to make 
minor differences to the final stable network state. 
Experiments were run wherein up to 30 agents were 
injected initially; the system still converged to a mean 
number of agents of 6.  

Experiments were conducted where agents were 
occasionally injected into the network in order to test 
the stability of the agent density management 
algorithm. As Figure 2 shows, injecting agents after 
the network (at 50 time units) has settled down merely 
causes the agent density to find a new stable point, 

which may, of course, be the same as the original 
point. This is to be expected in that many systems 
have several basins of stability. This characteristic is 
an attractive feature of the system in that we can alter 
the stable system trajectory by injection (or removal) 
of agents. In fact, as suggested earlier, we would 
propose the periodic injection of a density control 
agent in order to ensure that the system never remains 
locked at zero population for that agent. Figure 3 also 
shows the destruction of agents in the network after 
the settling period. This scenario represents the 
situation that initially inspired the density management 
algorithm, namely the loss of agents as a consequence 
of network component failure. Figure 3 shows two 
failures, at approximately 140 and 175 time units, 
where multiple agents are lost. Clearly, the algorithm 
has performed well, with the natural trajectory of the 
system being quickly restored. Obviously a failure of 
all components in the network would cause the loss of 
all agents; however, the scenario demonstrated in 
Figure 3 actually represents a failure of 25% of the 
network that, in all likelihood, represents an extreme 
case. More general experiments, with random single 
node failures, provided equivalent support for the 
robustness of the density control algorithm and results 
are not included here as, it was felt, the scenario 
described in the previous paragraph provides a more 
dramatic illustration of the robustness of the 
algorithm.  

4. Agent Upgrading 
Software rarely has completely correct behaviour 

when first deployed. The problem of upgrading 
software in an operational environment is challenging 
and is currently the focus of considerable research 
[19], [20] and [6]. Hofmeister [19] describes three 
forms of dynamic reconfiguration: module 
replacement, structural change and geometric 
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replacement. The software upgrade problem presents a 
unique challenge when the software is an agent and 
that agent is mobile, as we have no knowledge a priori 
of the location of any agent. The software upgrade 
problem is further complicated by no knowledge of 
the number of agents to be upgraded and their source 
of injection into the network. This latter piece of 
information is important as it implies that older, 
incorrect versions of a software agent may be injected 
into the network once the upgrade process has been 
supposedly completed. Together, these problems 
present a significant research problem, making 
geometric replacement the most attractive mechanism 
for upgrading agents. Again appealing to ant-like 
problem solving agents, and their tendency to be 
robust with respect to the failure of an individual 
agent, we view the agent upgrade problem as one of 
“failing” the faulty agent and injecting one with 
corrected behaviour. 

Not knowing the source of the agent originally 
injected into the network leads to the disturbing and 
inevitable conclusion that the upgrade process is 
potentially never complete as an obsolete agent may 
be introduced from a source that has yet to receive the 
corrected agent. 

Referring now to the previous section on density 
control, a potential mechanism for removal of the 
faulty agent is to exploit its response to the death 
signal and visit chemical concentrations. That is, 
increase the levels of the visit chemical for the faulty 
agent such that an associated DCA agent generates the 
death signal for that agent throughout the network. 
This is achieved by having different visit chemicals 
for the faulty and corrected agents with the encodings 
so chosen that the faulty agent senses the visit 
chemical of the correct agent. Hence, fault agents will 
tend to see higher concentrations of visit chemical 
when compared to the corrected agent; the corrected 
agent will tend only to see its own. An example best 
illustrates this.  

Consider two agent versions, vf and vc, 
representing faulty and corrected versions respectively 
having visit chemical encodings ####1 and ###11 
respectively. Assuming a string length of 5, if we were 
to have concentrations cf and cc of the two chemicals, 
the faulty agent would sense cf + cc, whereas the 
corrected agent would see cc. In other words, the 
faulty agent would see higher concentrations of visit 
chemicals and would be more likely to see the death 
signal as a result of exceeding the upper bound on visit 
chemical concentration. Similarly, the faulty agent 
would be less likely to see the birth signal as a result 
of higher visit chemical concentration. 

This example can easily be extended. Consider a 
perfect agent that corrects faults in agent version vc, 
say vp. Let vp have the visit chemical encoding ##111 

and concentration cp. Again assuming the Binary 
Array Chemistry of order 5, if we were to have 
concentrations, the faulty agent would sense cf + cc + 
cp, whereas the corrected agent would see cc + cp. In 
this case, both vf and vc would experience a reduced 
number of birth signals and elevated number of death 
signals. As the number of vp agents increases, the 
tendency is for the number of vf and vc agents to 
decrease, eventually causing the imperfect agent types 
to disappear. 

This mechanism works because of the encoding 
scheme used for the three agent types. It relies upon 
the masking of the existence of previous versions of 
the agent through the increasing number of bits being 
specified as we move to higher and higher versions of 
the agent. Obviously, this limits the number of 
versions that might be accommodated. However, a 
potentially infinite data structure such as can be 
provided by a tree removes this limitation. Obviously 
this is a more expensive solution from a computational 
viewpoint -- pattern matching by bit position versus 
matching by subtree -- but does solve the more general 
problem when an unbounded number of agent versions 
needs to be supported. 

4.1 Agent Upgrading Results 
This section presents experimental results that 

demonstrate the applicability of the agent upgrade 
algorithm. In the results presented below, the two 
networks used in the density control experiments were 
also used as a simulation test bed for the agent 
upgrade algorithm. 

In Figure 4, three flawed agents are injected into 
the network and are subject to the density control 
algorithm. Eventually the number of agents stabilizes 
around 7. At 83 time units, a single corrected agent is 
injected into the network and quickly establishes 
dominance over the flawed agent using the visit 
chemical masking mechanism introduced in the 
previous section. It is not possible for the population 
of flawed agents to recover once the number of flawed 
agents reaches zero, as the birth process is one of 
cloning. Only through injection of a new flawed agent 
into the network from some external source can the 
flawed population temporarily recover. 

In Figure 4, the flawed agent type is re-injected 
into the network at 140 time units following the 
colonization of the network by the corrected agent. 
The flawed agent is quickly removed from the 
network on both occasions despite large numbers of 
them being injected. While results are not included 
here, the number of flawed agents re-injected did not 
affect the final state of the network, merely the time to 
achieve it. In all cases, the flawed agents were 
eventually removed from the network, leaving only 



the corrected agent population. Clearly, this 
demonstrates that the corrected agent resists 
recolonization of the network by the flawed agent. The 
rejection of the flawed agents by the network is faster 
upon re-injection as a result of the established 
population of corrected agents.  

In order to demonstrate the robustness of the 
algorithm in the presence of multiple agent versions, 
experiments were conducted wherein a third version -- 
the “perfected agent” -- was injected into the network 
after the corrected agent population had replaced the 
initial population of flawed agents. As can be seen in 
Figure 5, the perfected agent quickly established a 
dominant position in the network causing the corrected 
agent population to vanish completely. Once again, 
subsequent re-injection of flawed or corrected agent 
populations did not affect the dominant position of the 
perfected agent. This is clearly shown in Figure 5 
where corrected and flawed agents are re-injected into 
the network following the perfected agent establishing 
itself in the network. Reviewing the interval 25 to 45 

time units in Figure 5 also shows that the algorithm 
can deal with multiple agent populations 
simultaneously trying to establish themselves. During 
this time interval, flawed, corrected and perfected 
agent types are moving throughout the network; 
however, the corrected agent population is quickly 
extinguished even before stabilization can occur. 
Despite the version control algorithm’s simplicity, it 
seems to be remarkably effective in maintaining the 
correct dominant version in the network. While the 
above results have demonstrated the effectiveness of 
the upgrade algorithm, a comment regarding the rate 
of production of visit chemicals for successive 
versions of the agent needs to be made. As stated 
previously, given two agent versions, vf and vc, with 
encodings as previously described, vf will see higher 
concentrations of visit chemical when compared to vc. 
If the rates of production per nodal access of visit 
chemical are rf and rc for faulty and corrected agents 
respectively, and the visit chemical sensitivity ranges 
are (lf,uf) and (lc,uc) respectively, we can accelerate the 
removal of faulty agents by setting the corrected agent 
visit chemical production rate such that rc > uf. If this 
relation holds, the faulty agent will tend to see 
quantities of visit chemical that exceed its upper 
density bound, resulting in the generation of the death 
signal for the faulty agent class in almost all instances. 
The word almost applies here, as we have to allow for 
the effects of evaporation in our system. Between the 
departure of a corrected agent and the arrival of a 
faulty agent evaporation can reduce the concentration 
of the visit chemicals sensed by the faulty agent below 
uf. In order for the corrected agent population to 
maintain density in a similar way to the flawed agent 
population with the relationship rc = uf holding other 
parameters have to be modified too.  Assuming the 
evaporation rate is constant, the following have to 
hold: uc = ufrc/rf and lc = lfrc/rf.. 

5. Conclusions 
In a network managed completely by swarms of 

mobile agents, two important observations need to be 
made. First, the number of agents is unknown and 
second, the positions of mobile agents are unknown. 
These characteristics make management of the swarm 
populations extremely challenging. This paper has 
addressed two questions related to the management of 
mobile agent swarms.  

The first question relates to the maintenance of 
population density and we have presented algorithms 
that maintain population density in a network having 
unreliable components. The algorithms presented rely 
on local knowledge only and we have shown by 
experiment that populations quickly settle to a mean 
population around which they oscillate. The 
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algorithms presented are robust with respect to the 
introduction of agents after the network has stabilized 
as well as loss due to component failure. 

The second question deals with the upgrading of 
agents over time. Agents, being software entities, 
rarely have correct behaviour when first introduced 
into service and often require upgrades. This paper 
presents an algorithm that solves the upgrade problem 
by taking advantage of the density control algorithm in 
a form of parasitic behaviour where a corrected agent 
“fools” the flawed agent population into believing that 
there are more of them than there are, the flawed agent 
population quickly decaying to zero. We believe that 
these algorithms, once again, clearly demonstrate the 
value of “learning from the ant”.  

6. References 
[1] Bieszczad A. and Pagurek, B., Network 

Management Application-Oriented Taxonomy of 
Mobile Code, Proceedings of the IEEE/IFIP 
Network Operations and Management 
Symposium NOMS '98, New Orleans, Louisiana, 
February 1998. 

[2] Bieszczad A., White, T., Pagurek, B., Mobile 
Agents for Network Management. In IEEE 
Communications Surveys, September 1998. 

[3] White T., SynthECA, A Synthetic Ecology of 
Chemical Agents, Ph.D. thesis, Carleton 
University, 2000. 

[4] Parunak H. V. D., Go to the Ant: Engineering 
Principles from Naturally Multi-Agent Systems, 
Annals of Operations Research, 75:69-101, 1997. 

[5] Dorigo M., Maniezzo V. and Colorni A., The 
Ant System: An Autocatalytic Optimizing 
Process. Technical Report No. 91-016, 
Politecnico di Milano, Italy, 1991. 

[6] Ning F., Software Hot Swapping, Master of 
Engineering thesis, Department of Systems and 
Computer Engineering, Carleton University, 
September 1999. 

[7] White T., Pagurek B. and Oppacher F., 
Connection Management using Adaptive Mobile 
Agents, Proceedings of the International 
Conference on Parallel and Distributed 
Processing Techniques and Applications 
(PDPTA '98), July 1998. 

[8] C. Tschudin. Open Resource Allocation for 
Mobile Code. Mobile Agents - First International 
Workshop, MA '97 (Berlin, Germany, April 7-8, 
1997). Published as Kurth Rothermel and Radu 
Popescu-Zeletin, editors, Lecture Notes in 
Computer Science, 1219, Springer, 1997. 

[9] Jonathan Bredin, Rajiv T Maheswaran, Cagri 
Imer, Tamer Basar, David Kotz, and Daniela 
Rus; A Game-Theoretic Formulation of Multi-

Agent Resource Allocation, Proceedings of the 
2000 International Conference on Autonomous 
Agents, Barcelona, Spain, June 2000. 

[10] Jonathan Bredin, David Kotz, Daniela Rus; 
Economic Markets as a Means of Open Mobile-
Agent Systems, Appears in the Proceedings of 
the Workshop of Mobile Agents in the Context 
of Competition and Cooperation as part of the 
Third International Conference on Autonomous 
Agents, Seattle, WA, May 1999. 

[11] O. Shehory, K. Sycara P. Chalasani and S. Jha 
Agent cloning: an approach to agent mobility and 
resource allocation, IEEE Communications, 
pages 58-67, vol. 36 no. 7, July 1998. 

[12] Simoes P., Moura e Silva L., and Boavida F., 
Mobile Agent Infrastructures: a Solution for 
Management or a problem to Manage, in 
Proceedings of the 3rd IEEE Conference on 
Telecommunications, 23-24 April 2001, Figueira 
da Foz, Portugal. 

[13] Mudumbai Ranganathan, Anurag Acharya, and 
Joel Saltz. Distributed resource monitors for 
mobile objects. In Proceedings of the Fifth 
International Workshop on Object Orientation in 
Operating Systems, pages 19-23, Seattle, Wa., 
October 1996. 

[14] Jonathan Bredin, David Kotz, and Daniela Rus. 
Market-based resource control for mobile agents. 
In Proceedings of Autonomous Agents '98, pages 
197-204, 1998. 

[15] Jonathan Bredin, David Kotz, and Daniela Rus. 
Utility driven mobile-agent scheduling. 
Technical Report PCS-TR98-331, Dept. of 
Computer Science, Dartmouth College, May 
1998. 

[16] L. Yamamoto and G. Leduc. An Agent-Inspired 
Active Network Resource Trading Model 
Applied to Congestion Control. In Proceedings 
of the MATA 2000 Workshop, Springer LNCS 
1931, pages 151--169, Paris, France, September 
2000. 

[17] Hölldobler B. and Wilson E.O., Journey to the 
Ants. Bellknap Press/Harvard University Press, 
1994. 

[18] Bonabeau E. Dorigo M. and Theraulaz G, Swarm 
Intelligence, Oxford Press, 1999 

[19] Hofmeister C. Dynamic Reconfiguration of 
Distributed Applications, Ph.D. thesis, Computer 
Science Department, University of Maryland, 
1993. 

[20] Noel de Palma, Dynamic reconfiguration of 
agent-based applications, Technical Report 
Project SIRAC, INRIA, 1999. 


