
Management of Mobile Agent Systems: Learning From the Ants

Tony White1, Bernard Pagurek2, Dwight Deugo1
1School of Computer Science, Carleton University

2Department of Systems and Computer Engineering, Carleton University
1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada

{arpwhite@scs.carleton.ca, bernie@sce.carleton.ca, deugo@scs.carleton.ca}

Abstract
The management of mobile agent systems that solve
problems in a network is an issue that must be
addressed if mobile agents are to be deployed
industrially. While centralized solutions are possible,
where agent information is maintained on well-known
servers, this is hardly desirable when distributed
problem solving is one of the motivating reasons for
employing mobile agents. It is clear that insufficient or
excessive numbers of agents can cause the problem
solving capabilities of an agent-based system to be
impaired. Also, agents being software entities are
almost always flawed therefore requiring the upgrade
problem to be solved. This paper presents distributed
algorithms based upon ant social behaviour that solve
the problems of agent density maintenance and the
agent upgrade problem.

Keywords: mobile agents, self-organizing agents,
network management, agent upgrade

1. Introduction
This paper concerns itself with the management of

software agents moving throughout a network for the
purpose of solving problems using distributed
computation. In any system that supports distributed
computation in an unreliable network, there is a need
to address issues of agent density and upgrading. The
application of mobile agents, specifically netlets [1], to
Network Management [2] requires that these problems
be solved in order to avoid the issues described in
[12]; namely, that the solution becomes a problem
itself.

An excessive number of agents in a network can
significantly degrade the functioning of that network,
while too few may also compromise performance [2],
[11]. Generally, it is sufficient to maintain agent
density within a range; a single point value is
unnecessarily restrictive. In fact, point control is often
the cause of oscillatory behaviour in a controlled
system. In an unreliable network we find that links or
network nodes may fail with a resulting loss of any

agents executing on the node or in transit between two
nodes. Some might argue that the computing
infrastructure should support reliable computation and
transport. However, this adds significantly to the
complexity of the mobile agent infrastructure required
and seems unnecessary when we observe that naturally
occurring agent systems (for example ants and wasps)
are extremely tolerant to individual agent loss.
Maintaining accurate statistics on agent numbers and
position is really unnecessary for solving this problem
if we view it from a decentralized viewpoint. In fact,
agent populations should self-organize, as is clearly
seen in nature [17], [18].

It is also too commonly the case that software, and
agents are not likely to be exceptional here, is flawed
either logically or functionally. When software flaws
are discovered, software modification of individual
agents or complete replacement of the defective agent
must occur. A computing infrastructure supporting
agent versioning is a more challenging problem than
density maintenance, in that we know neither the
positions of individual agents nor the versions actively
moving through the network. This presents a serious
halting problem in that we do not know the numbers
of particular versions of the agent that are active in the
network. It is not possible, then, to know when the
upgrade process is complete. In other words, any
algorithm or solution technique should be capable of
upgrading older versions of agents for all time.

It is difficult to conceive of an environment that
automatically upgrades agent software when changes
are available that does not rely on some form of global
information. For example, the current mechanism for
software upgrade used on personal computers is to
check periodically with the supplier of the software
and download improvements when available. While
mirror sites partially solve the load balancing problem,
the solution is still a central one, one in which global
information is held on the supplier’s web site. Should
the supplier move or disappear completely, the
upgrade process fails. This, obviously, is an inferior
solution. A decentralized solution to the versioning

problem would have no such limitation, relying
instead on only local information.

This paper proposes the use of algorithms that
exploit ideas inspired by ants; relying exclusively on
local information and the emergent behavior of large
numbers of agents. The paper consists of four further
sections. Section 2 provides a brief description of the
motivating ideas. Section 3 provides a description of
the agent density control problem and how it can be
solved using stigmergic communication. Section 4
addresses the problem of upgrading software agents in
a network and provides algorithms for the upgrade
problem. The paper concludes with a section that
summarizes the key contributions of the paper.

2. Motivating Ideas
It is difficult to argue against the effectiveness of

many naturally occurring multi-agent systems and, in
particular, systems exhibiting mobility. Societies of
simple agents are capable of complex problem solving
while possessing limited individual abilities [17].
Many algorithms inspired by the social behaviour of
insects have recently been documented [18] with
Dorigo being acknowledged as having introduced ant-
based search [5].

Problem solving by societies of simple agents has
a number of common characteristics. Inter-agent
communication is local; no single agent has a global
view of the world. Communication is also achieved
using simple signals and these signals dissipate with
time. Signal levels provide the driving force for
migration patterns. Individual agents sense and
contribute signal energy to the environment. In this
description of the problem solving process, there are
two distinct and important agent characteristics. First,
there is the role of the agent within the problem
solving process; i.e., how the work of problem solving
is distributed to a diverse set of agents. Second, the
degree to which the actions of one agent reinforce the
actions of other agents in the society of problem
solvers is significant. The appeal of swarms of
biologically inspired agents for industrial problem
solving has recently been appreciated [4]. Research
into the problems and potential of multiple, interacting
swarms of mobile agents is just beginning [3].

Appealing to Grassè’s principle of stigmergy (see
[18]), ant-inspired agents solve problems by moving
over the nodes and links in a network and interacting
with "chemical messages" deposited in that network.
Chemical messages have two attributes, a label and a
concentration. Chemical messages are used for
communication rather than raw operational
measurements from the network in order to provide a
clean separation of measurement from reasoning. In
addition, chemical messages drive the migration

patterns of agents, the messages being intended to lead
agents to areas of the network that may require
attention. Chemical labels are digitally encoded,
having an associated string pattern that uses the
alphabet {1, 0, #}. This encoding has been inspired by
those used in Genetic Algorithms. The hash symbol in
the alphabet allows for matching of both one and zero
and is, therefore, the "don't care" symbol.

3. Density Control
The problem of resource control for mobile agents

can be attributed to Tschudin [8] and has been studied
by several researchers [9], [10], [11], [13], [14], [15]
and [16]. Shehory et al [11], for example, uses agent
cloning to ensure appropriate agent densities for
problem solving while acknowledging the relevance of
the load balancing literature, while Bredin et al [10],
[14] uses Market Based Control for resource allocation
problem resolution. Clearly, mobile agent researchers
have long recognized the importance of having an
appropriate number of agents in a network performing
a given task. For example, in the routing problem
described in [7], it was noted that if too few routing
agents were sent out into the network, routes would
not necessarily emerge. This is in complete agreement
with Dorigo’s work on Ant Search [5], ant-based
problem solving and AntNet [18].

The above scenario is a less interesting example of
density control when compared to the general situation
with agents moving through the network and never
terminating their problem solving activity; for
example fault detection using netlets [1], [2]. It is this
type of problem that motivates the research reported
here.

Consider, then, the problem of multiple swarms of
problem solving agents in an unreliable network.
Clearly, if steps are not taken to inject new swarm
agents over time, agent density will tend to zero. The
argument is straightforward. Assuming that agent
movement is random and uncorrelated, given a non-
zero component failure rate, λf, following a Poisson
distribution, a network of n nodes, with m agents, the
number of agents failing per unit time is: mλf/n. This
expression, being unconditionally greater than zero
given n,m greater than zero, ensures that the
probability that the number of agents in the network at
time t1 is less than the number of agents in the network
at time t0, t1 > t0 is one.

Having established the need for agent replacement,
a mechanism for that replacement is required. We
propose the addition of a Density Control Agent
(DCA) class. The purpose of the density control agent
class is to circulate continuously in the network
depositing chemical signals in that network such that

agent classes whose density is being controlled will
automatically adjust their numbers to fall within the
target density range. The DCA class uses a random
migration decision function in order to explore all
parts of the network equally and is responsible for
controlling its own density. It also remains at each
node for a randomly generated period chosen from a
uniform distribution in order to avoid correlations
between agent actions. This is an important
observation as, without it, significantly greater
oscillations are observed with possible population
extinction. Every agent class that is density controlled
generates a visit chemical that is sensed by the DCA.
The DCA controls its own density in order to solve the
problem of managing management class agents.
Therefore, the DCA also generates a visit chemical.
Visit chemical concentrations are associated with the
node. The visit chemical leaves a trail of activity for
the density-controlled problem solving agents that is
integrated across a number of network nodes by DCA
agents for the purpose of generating birth or death
signals that are in turn sensed by the density controlled
problem solving agents. Birth or death signals are,
naturally, chemical in nature and these chemicals do
not evaporate.

DCA agents generate birth signals when the
aggregated visit chemical concentration for a
particular density control problem solving agent class
falls below a threshold value. Visit chemical
concentrations evaporate over time, this forming the
dissipative field that makes the density control
mechanism work. This is a crucial part of the control
process, as, without it, visit chemicals would
accumulate forever leading to the rapid extinction of
the entire agent population. In fact, we make use of
this observation in solving the agent upgrade problem
described in Section 4. DCA agents generate death
signals when the aggregated visit chemical
concentration for a particular density control problem
solving agent class exceeds a threshold value. Both
types of signals are generated on the node where the
appropriate threshold condition is violated. An
exponential averaging process is used to aggregate
visit chemical concentrations.

When a density controlled problem solving agent
senses a birth signal, it clones itself, generating a new
agent with the parent agent consuming the birth signal.
When a density controlled problem solving agent
senses a death signal, it chooses to die according to a
probability distribution, having first consumed the
death signal.

3.1 Results
In order to demonstrate the utility of the above

algorithm, the two networks used for routing
experiments [7] were revisited for density
maintenance. Two classes of agent, including the
DCA, both with random migration decision functions,
were allowed to circulate within the network. A single
agent of each class was injected into the network and
allowed to stabilize to the “natural” value for the
network. In later experiments, extra agents were
injected into the network periodically in order to see if
the density correction algorithm could return the
density to the appropriate value for the network. This
had the added side effect of ensuring that at least one
DCA agent would be present in the network.

The minimum concentration threshold value was
set at 1, the maximum at 5. The rate at which visit
chemical was deposited on the node was 1.5 units per
visit; the evaporation rate was set to 0.8 units per
simulation time step. Figure 1 shows the variation of
agent number with time for graph1 used in the routing
experiments previously described [7]. The agent type
plotted represents a very simple agent that has a
random migration pattern and is designed to measure
the concentration of visit chemical, nothing more. The
focus, in this study, is the management of agent
number and not problem solving per se. The variation
of agent number with time represents the self-
regulation of agents in the system; no further agents
beyond the initial seed agent were injected into the
network. The rapid rise in agent number initially is
due to the fact that the network contains no visit
chemical traces for the agent type. As a consequence
of this, birth signals will be generated for all nodes
visited and a large number of new agents will be
generated. Avoiding this transient is possible by
injection of the DCA after the network has stabilized,
i.e., after the problem solving agents have had time to
colonize the network and lay down visit chemical
traces that mark their presence in the network.

Even with the start up transient, the network
quickly recovers and settles down to a number of
agents that oscillates around 5. Similar behavior can
be observed in Figure 2, where agent density control is
applied to graph2 [7]. In the experiment shown in this
figure, the agent number oscillates around 7, with the
number of agents never falling below 5. The
oscillation can be further damped by choice of
exponential averaging constant and by adjustment of
the minimum to maximum visit chemical
concentration threshold ratio. In the experiments
charted in Figure 2 and Figure 3, a ratio of 5 was used
to control the agent density.

Figure 3. Agent Number vs Time

0

5

10

15

20

25

0 50 100 150 200 250

Time

A

ge
nt

s

Figure 2. Agent Number vs Time

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160

Time

A

ge
nt

s

Figure 2 demonstrates the utility of having density
control come online once the network has been
colonized by problem solving agents. In these
experiments, density control was disabled during the
first 20 time units of the simulation. Interestingly,
Figure 2 shows the system moving from one stable
state to another at approximately 72 time units.
Continuing the simulation beyond 200 time units saw
no further changes in state. Contrasting the dynamics
of this system with those displayed in Figure 2 clearly
shows a much smaller transient and more rapid
stabilization to the steady state network behaviour.
The number of agents injected initially seems to make
minor differences to the final stable network state.
Experiments were run wherein up to 30 agents were
injected initially; the system still converged to a mean
number of agents of 6.

Experiments were conducted where agents were
occasionally injected into the network in order to test
the stability of the agent density management
algorithm. As Figure 2 shows, injecting agents after
the network (at 50 time units) has settled down merely
causes the agent density to find a new stable point,

which may, of course, be the same as the original
point. This is to be expected in that many systems
have several basins of stability. This characteristic is
an attractive feature of the system in that we can alter
the stable system trajectory by injection (or removal)
of agents. In fact, as suggested earlier, we would
propose the periodic injection of a density control
agent in order to ensure that the system never remains
locked at zero population for that agent. Figure 3 also
shows the destruction of agents in the network after
the settling period. This scenario represents the
situation that initially inspired the density management
algorithm, namely the loss of agents as a consequence
of network component failure. Figure 3 shows two
failures, at approximately 140 and 175 time units,
where multiple agents are lost. Clearly, the algorithm
has performed well, with the natural trajectory of the
system being quickly restored. Obviously a failure of
all components in the network would cause the loss of
all agents; however, the scenario demonstrated in
Figure 3 actually represents a failure of 25% of the
network that, in all likelihood, represents an extreme
case. More general experiments, with random single
node failures, provided equivalent support for the
robustness of the density control algorithm and results
are not included here as, it was felt, the scenario
described in the previous paragraph provides a more
dramatic illustration of the robustness of the
algorithm.

4. Agent Upgrading
Software rarely has completely correct behaviour

when first deployed. The problem of upgrading
software in an operational environment is challenging
and is currently the focus of considerable research
[19], [20] and [6]. Hofmeister [19] describes three
forms of dynamic reconfiguration: module
replacement, structural change and geometric

Figure 1. Agent Num ber vs Tim e

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160

T i m e

Agents
injected

Agents
lost

replacement. The software upgrade problem presents a
unique challenge when the software is an agent and
that agent is mobile, as we have no knowledge a priori
of the location of any agent. The software upgrade
problem is further complicated by no knowledge of
the number of agents to be upgraded and their source
of injection into the network. This latter piece of
information is important as it implies that older,
incorrect versions of a software agent may be injected
into the network once the upgrade process has been
supposedly completed. Together, these problems
present a significant research problem, making
geometric replacement the most attractive mechanism
for upgrading agents. Again appealing to ant-like
problem solving agents, and their tendency to be
robust with respect to the failure of an individual
agent, we view the agent upgrade problem as one of
“failing” the faulty agent and injecting one with
corrected behaviour.

Not knowing the source of the agent originally
injected into the network leads to the disturbing and
inevitable conclusion that the upgrade process is
potentially never complete as an obsolete agent may
be introduced from a source that has yet to receive the
corrected agent.

Referring now to the previous section on density
control, a potential mechanism for removal of the
faulty agent is to exploit its response to the death
signal and visit chemical concentrations. That is,
increase the levels of the visit chemical for the faulty
agent such that an associated DCA agent generates the
death signal for that agent throughout the network.
This is achieved by having different visit chemicals
for the faulty and corrected agents with the encodings
so chosen that the faulty agent senses the visit
chemical of the correct agent. Hence, fault agents will
tend to see higher concentrations of visit chemical
when compared to the corrected agent; the corrected
agent will tend only to see its own. An example best
illustrates this.

Consider two agent versions, vf and vc,
representing faulty and corrected versions respectively
having visit chemical encodings ####1 and ###11
respectively. Assuming a string length of 5, if we were
to have concentrations cf and cc of the two chemicals,
the faulty agent would sense cf + cc, whereas the
corrected agent would see cc. In other words, the
faulty agent would see higher concentrations of visit
chemicals and would be more likely to see the death
signal as a result of exceeding the upper bound on visit
chemical concentration. Similarly, the faulty agent
would be less likely to see the birth signal as a result
of higher visit chemical concentration.

This example can easily be extended. Consider a
perfect agent that corrects faults in agent version vc,
say vp. Let vp have the visit chemical encoding ##111

and concentration cp. Again assuming the Binary
Array Chemistry of order 5, if we were to have
concentrations, the faulty agent would sense cf + cc +
cp, whereas the corrected agent would see cc + cp. In
this case, both vf and vc would experience a reduced
number of birth signals and elevated number of death
signals. As the number of vp agents increases, the
tendency is for the number of vf and vc agents to
decrease, eventually causing the imperfect agent types
to disappear.

This mechanism works because of the encoding
scheme used for the three agent types. It relies upon
the masking of the existence of previous versions of
the agent through the increasing number of bits being
specified as we move to higher and higher versions of
the agent. Obviously, this limits the number of
versions that might be accommodated. However, a
potentially infinite data structure such as can be
provided by a tree removes this limitation. Obviously
this is a more expensive solution from a computational
viewpoint -- pattern matching by bit position versus
matching by subtree -- but does solve the more general
problem when an unbounded number of agent versions
needs to be supported.

4.1 Agent Upgrading Results
This section presents experimental results that

demonstrate the applicability of the agent upgrade
algorithm. In the results presented below, the two
networks used in the density control experiments were
also used as a simulation test bed for the agent
upgrade algorithm.

In Figure 4, three flawed agents are injected into
the network and are subject to the density control
algorithm. Eventually the number of agents stabilizes
around 7. At 83 time units, a single corrected agent is
injected into the network and quickly establishes
dominance over the flawed agent using the visit
chemical masking mechanism introduced in the
previous section. It is not possible for the population
of flawed agents to recover once the number of flawed
agents reaches zero, as the birth process is one of
cloning. Only through injection of a new flawed agent
into the network from some external source can the
flawed population temporarily recover.

In Figure 4, the flawed agent type is re-injected
into the network at 140 time units following the
colonization of the network by the corrected agent.
The flawed agent is quickly removed from the
network on both occasions despite large numbers of
them being injected. While results are not included
here, the number of flawed agents re-injected did not
affect the final state of the network, merely the time to
achieve it. In all cases, the flawed agents were
eventually removed from the network, leaving only

the corrected agent population. Clearly, this
demonstrates that the corrected agent resists
recolonization of the network by the flawed agent. The
rejection of the flawed agents by the network is faster
upon re-injection as a result of the established
population of corrected agents.

In order to demonstrate the robustness of the
algorithm in the presence of multiple agent versions,
experiments were conducted wherein a third version --
the “perfected agent” -- was injected into the network
after the corrected agent population had replaced the
initial population of flawed agents. As can be seen in
Figure 5, the perfected agent quickly established a
dominant position in the network causing the corrected
agent population to vanish completely. Once again,
subsequent re-injection of flawed or corrected agent
populations did not affect the dominant position of the
perfected agent. This is clearly shown in Figure 5
where corrected and flawed agents are re-injected into
the network following the perfected agent establishing
itself in the network. Reviewing the interval 25 to 45

time units in Figure 5 also shows that the algorithm
can deal with multiple agent populations
simultaneously trying to establish themselves. During
this time interval, flawed, corrected and perfected
agent types are moving throughout the network;
however, the corrected agent population is quickly
extinguished even before stabilization can occur.
Despite the version control algorithm’s simplicity, it
seems to be remarkably effective in maintaining the
correct dominant version in the network. While the
above results have demonstrated the effectiveness of
the upgrade algorithm, a comment regarding the rate
of production of visit chemicals for successive
versions of the agent needs to be made. As stated
previously, given two agent versions, vf and vc, with
encodings as previously described, vf will see higher
concentrations of visit chemical when compared to vc.
If the rates of production per nodal access of visit
chemical are rf and rc for faulty and corrected agents
respectively, and the visit chemical sensitivity ranges
are (lf,uf) and (lc,uc) respectively, we can accelerate the
removal of faulty agents by setting the corrected agent
visit chemical production rate such that rc > uf. If this
relation holds, the faulty agent will tend to see
quantities of visit chemical that exceed its upper
density bound, resulting in the generation of the death
signal for the faulty agent class in almost all instances.
The word almost applies here, as we have to allow for
the effects of evaporation in our system. Between the
departure of a corrected agent and the arrival of a
faulty agent evaporation can reduce the concentration
of the visit chemicals sensed by the faulty agent below
uf. In order for the corrected agent population to
maintain density in a similar way to the flawed agent
population with the relationship rc = uf holding other
parameters have to be modified too. Assuming the
evaporation rate is constant, the following have to
hold: uc = ufrc/rf and lc = lfrc/rf..

5. Conclusions
In a network managed completely by swarms of

mobile agents, two important observations need to be
made. First, the number of agents is unknown and
second, the positions of mobile agents are unknown.
These characteristics make management of the swarm
populations extremely challenging. This paper has
addressed two questions related to the management of
mobile agent swarms.

The first question relates to the maintenance of
population density and we have presented algorithms
that maintain population density in a network having
unreliable components. The algorithms presented rely
on local knowledge only and we have shown by
experiment that populations quickly settle to a mean
population around which they oscillate. The

Figure 4. Agent Number vs Time

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140 160 180

Ti me

Figure 5. Agent Number vs Time

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140 160 180

Ti me

algorithms presented are robust with respect to the
introduction of agents after the network has stabilized
as well as loss due to component failure.

The second question deals with the upgrading of
agents over time. Agents, being software entities,
rarely have correct behaviour when first introduced
into service and often require upgrades. This paper
presents an algorithm that solves the upgrade problem
by taking advantage of the density control algorithm in
a form of parasitic behaviour where a corrected agent
“fools” the flawed agent population into believing that
there are more of them than there are, the flawed agent
population quickly decaying to zero. We believe that
these algorithms, once again, clearly demonstrate the
value of “learning from the ant”.

6. References
[1] Bieszczad A. and Pagurek, B., Network

Management Application-Oriented Taxonomy of
Mobile Code, Proceedings of the IEEE/IFIP
Network Operations and Management
Symposium NOMS '98, New Orleans, Louisiana,
February 1998.

[2] Bieszczad A., White, T., Pagurek, B., Mobile
Agents for Network Management. In IEEE
Communications Surveys, September 1998.

[3] White T., SynthECA, A Synthetic Ecology of
Chemical Agents, Ph.D. thesis, Carleton
University, 2000.

[4] Parunak H. V. D., Go to the Ant: Engineering
Principles from Naturally Multi-Agent Systems,
Annals of Operations Research, 75:69-101, 1997.

[5] Dorigo M., Maniezzo V. and Colorni A., The
Ant System: An Autocatalytic Optimizing
Process. Technical Report No. 91-016,
Politecnico di Milano, Italy, 1991.

[6] Ning F., Software Hot Swapping, Master of
Engineering thesis, Department of Systems and
Computer Engineering, Carleton University,
September 1999.

[7] White T., Pagurek B. and Oppacher F.,
Connection Management using Adaptive Mobile
Agents, Proceedings of the International
Conference on Parallel and Distributed
Processing Techniques and Applications
(PDPTA '98), July 1998.

[8] C. Tschudin. Open Resource Allocation for
Mobile Code. Mobile Agents - First International
Workshop, MA '97 (Berlin, Germany, April 7-8,
1997). Published as Kurth Rothermel and Radu
Popescu-Zeletin, editors, Lecture Notes in
Computer Science, 1219, Springer, 1997.

[9] Jonathan Bredin, Rajiv T Maheswaran, Cagri
Imer, Tamer Basar, David Kotz, and Daniela
Rus; A Game-Theoretic Formulation of Multi-

Agent Resource Allocation, Proceedings of the
2000 International Conference on Autonomous
Agents, Barcelona, Spain, June 2000.

[10] Jonathan Bredin, David Kotz, Daniela Rus;
Economic Markets as a Means of Open Mobile-
Agent Systems, Appears in the Proceedings of
the Workshop of Mobile Agents in the Context
of Competition and Cooperation as part of the
Third International Conference on Autonomous
Agents, Seattle, WA, May 1999.

[11] O. Shehory, K. Sycara P. Chalasani and S. Jha
Agent cloning: an approach to agent mobility and
resource allocation, IEEE Communications,
pages 58-67, vol. 36 no. 7, July 1998.

[12] Simoes P., Moura e Silva L., and Boavida F.,
Mobile Agent Infrastructures: a Solution for
Management or a problem to Manage, in
Proceedings of the 3rd IEEE Conference on
Telecommunications, 23-24 April 2001, Figueira
da Foz, Portugal.

[13] Mudumbai Ranganathan, Anurag Acharya, and
Joel Saltz. Distributed resource monitors for
mobile objects. In Proceedings of the Fifth
International Workshop on Object Orientation in
Operating Systems, pages 19-23, Seattle, Wa.,
October 1996.

[14] Jonathan Bredin, David Kotz, and Daniela Rus.
Market-based resource control for mobile agents.
In Proceedings of Autonomous Agents '98, pages
197-204, 1998.

[15] Jonathan Bredin, David Kotz, and Daniela Rus.
Utility driven mobile-agent scheduling.
Technical Report PCS-TR98-331, Dept. of
Computer Science, Dartmouth College, May
1998.

[16] L. Yamamoto and G. Leduc. An Agent-Inspired
Active Network Resource Trading Model
Applied to Congestion Control. In Proceedings
of the MATA 2000 Workshop, Springer LNCS
1931, pages 151--169, Paris, France, September
2000.

[17] Hölldobler B. and Wilson E.O., Journey to the
Ants. Bellknap Press/Harvard University Press,
1994.

[18] Bonabeau E. Dorigo M. and Theraulaz G, Swarm
Intelligence, Oxford Press, 1999

[19] Hofmeister C. Dynamic Reconfiguration of
Distributed Applications, Ph.D. thesis, Computer
Science Department, University of Maryland,
1993.

[20] Noel de Palma, Dynamic reconfiguration of
agent-based applications, Technical Report
Project SIRAC, INRIA, 1999.

